

Green Supply Chain Integration and Sustainable Supply Chain Performance: The mediating roles of Green Innovation and Supply Chain Resilience, and the moderating roles of Green Value Co-Creation and Absorptive Capacity

Muhammad Saqlain Hussain (Corresponding Author)

Research Scholar, Karachi University Business School, University of Karachi, Pakistan.
Saqlainraheel901@gmail.com

Sheikh Muhammad Fakhar E Alam Siddiqui

Assistant Professor, Karachi University Business School, University of Karachi, Pakistan.

fakhrealam@uok.edu.pk

<https://orcid.org/0009-0000-1073-5623>

Abstract

The research focuses on how the Green Supply Chain Integration (GSCI) affects the Sustainable Supply Chain Performance (SSCP) and the parallel mediating role of Green Innovation (GInv) and Supply Chain Resilience (RES) in particular, and the possible moderating role of Green Value Co-Creation (GVCc) and Absorptive Capacity (AC) in particular. The study was based on the resource-based view, relational view and the knowledge-based perspective, and had a quantitative approach where primary data was gathered through a web-based survey of managers engaging in the supply chain and sustainability practices working in different industries. The mediated-moderated conceptual model was empirically constructed and analyzed with the help of the Partial Least Squares Structural Equation Modeling (PLS-SEM) in SmartPLS software. The results show that, the direct relationship between the three dimensions of GSCI, which include Green Internal Integration, Green Customer Integration and Green Supplier Integration and SSPC, was not found to be significant after adjusting some factors between them therefore indicating that the relationship between them is largely indirect. Green Customer Integration ($= 0.345, p = 0.001$) and Green Internal Integration $= 0.210, p = 0.037$) became significant positive predictors of Green Innovation and no significant impact of Green Supplier Integration was noticed. The direct positive impact of Supply Chain Resilience on SSPC was the most consistent and strong ($\beta = 0.296, p = 0.001$), which emphasized the importance of the latter in the attainment of sustainable results in unstable conditions. In sum, the structural model was moderate to high in explanatory power, considering that it explained 47.8% to 52.4% of the variance in the endogenous constructs. The findings emphasize the fact that the role of green supply chain integration in sustainable performance is majorly indirect in nature with Supply

Chain Resilience being the predominant means of transmission and Absorptive Capacity acting as an important enabling factor. These results criticize the simplistic direct-effect approaches and stress the strategic significance of building organizational resilience capacity and knowledge acquisition systems in making successful conversion of green integration initiatives into long-term sustainability benefits in a business world that is becoming more uncertain and disruptive.

Keywords: Green Supply Chain, Green Innovation, Supply Chain Resilience, Green Value Co-Creation

1. INTRODUCTION

1.1 Background & Context

In recent years, rising environmental concerns, regulatory requirements, and stakeholder demands have forced organisations to integrate sustainability into their supply chain strategies (Baah et al., 2020). Supply chains are no longer just measured on its cost efficiency and responsiveness, but are now being measured on how the firm is able to deliver economic, environmental and social performance at the same time. Within this context, Green Supply Chain Integration (GSCI) has emerged as a strategic approach through which firms will coordinate the functions within their boundaries and collaborate with their customers and suppliers in order to minimize environmental impact and also increase the overall supply chains performance.

Existing literature suggests that by integrating environmental considerations across the supply chain partners, better information sharing, joint environmental planning and the alignment of sustainability goals can be enabled (Ahmed et al., 2020). Such integration can enhance Sustainable Supply Chain Performance (SSCP), which will result in less waste, risk management, and environmental standard compliance. However, empirical findings on direct effects of GSCI on SSCP remain mixed, suggesting that this relationship may not be primarily linear and may be contextual and be affected by internal organizational capabilities. This needs has created a need to explore the underlying mechanisms through which GSCI translates into superior sustainable outcomes.

One important mechanism that was underlined in previous researches is the Green Innovation (GInv) which represents the capability to develop environmentally friendly products and processes by firms. Through close integration with suppliers and customers, organizations will have access to green knowledge, cleaner technologies and eco-design practices that promote innovation (Ul-Duraret et al., 2023). Nevertheless, innovation alone may not suffice in more and more volatile and disruption-prone supply chain environments. Recent global events, including pandemics, geopolitical conflicts and climatic induced disruptions have highlighted the importance of Supply Chain Resilience (RES) the ability to anticipate, respond to & recover from unexpected disturbances in order to maintain continuity in the operational conducting process.

1.2 Research Aim & Objectives

1. To determine the effect of GSCI on SSCP.
2. To determine the effect of GSCI on Green Innovation (GInv).
3. To test whether GInv mediates the relationship between GSCI and SSCP.
4. To test whether GVCc moderates the relationship between GSCI and SSCP.
5. To determine the effect of GSCI on Resilience (RES).
6. To determine the effect of Resilience (RES) on SSCP.
7. To test whether Absorptive Capacity (AC) strengthens (moderates) the effects of GSCI → GInv and GSCI → RES.

LITERATURE REVIEW

2.1 Green Supply Chain Integration (GSCI)

Green Supply Chain Integration, or else known to as CSC refers to the strategic alignment and coordination of the environment goals, processes and information flows beyond the organization boundaries and with the internal functions. Extending the scope of traditional supply chain integration, GSCI incorporates environmental concerns into decision making and operational activities and focuses on working together for sustainability rather than individually and in isolation for compliance (Yanget al., 2026). From a theoretical standpoint, GSCI is based on the resource-based view and the relational view that contend inter-organizational coordination and common environmental capabilities can lead to competitive advantage that is hard to mimic.

2.2 Sustainable Supply Chain Performance (SSCP)

Sustainable Supply Chain Performance (SSCP) is an evolution of the classic approach to performance assessment by asking not only operational and financial outcomes but extending to the environment and societal impacts of those outcomes. Unlike the conventional performance of the supply chain which focuses on costs, quality and delivery, SSCP portrays the ability of the functioning of the supply chain in a way that minimises environmental damage and backs up long-term viability (Agyabeng-Mensah et al., 2025). The prevailing conceptualization of SSCP is based on the triple bottom line perspective which stresses on economic, environmental and operational sustainability.

2.3 Mediating Mechanisms: Green Innovation and Supply Chain Resilience

Green Innovation (GInv) is the development and implementation of environmentally friendly products, processes and technologies that have reduced ecological impact and support organizational performance. The previous works have

tacked more and more on the idea that the Green Supply Chain Integration (GSCI) does not necessarily lead to superior Sustainable Supply Chain Performance (SSCP), instead its benefits are derived by innovation-based transformation (Zhang & Zhang, 2025). Through close interaction with suppliers and customers, firms gain access to environmental knowledge, cleaner technologies and eco-design capabilities to stimulate green innovation. Internally, another barrier to addressing is to cross-functional coordination that further facilitate the assimilation of such knowledge into operational routines.

2.4 Moderating Mechanisms: Green Value Co-Creation and Absorptive Capacity

Green Value Co-Creation (GVCC) means the active involvement of customers and other stakeholders in the design, delivery and improvement of environmentally sustainable products and services (Shi et al., 2020). Moving beyond a firm-centered focus on sustainability, GVCC focuses on interactive dialogue, commonly agreed decision making and shared problem solving. In line with a stakeholder theory viewpoint, involving customers to co-create green values will increase legitimacy and can support sustainability activities with market expectations.

2.8 Hypotheses

- **H1:** GSCI has a positive and significant effect on SSCP.
- **H2:** GSCI has a positive and significant effect on GInv.
- **H3:** GInv mediates the relationship between GSCI and SSCP.
- **H4:** GVCC moderates the relationship between GSCI and SSCP.
- **H5:** GSCI has a positive and significant effect on Supply Chain Resilience (RES).
- **H6:** Supply Chain Resilience (RES) has a positive and significant effect on SSCP.
- **H7:** RES mediates the relationship between GSCI and SSCP.
- **H8:** Absorptive Capacity (AC) positively moderates the relationship between GSCI and GInv (the relationship is stronger when AC is high).
- **H9:** Absorptive Capacity (AC) positively moderates the relationship between GSCI and RES (the relationship is stronger when AC is high).

RESEARCH METHODOLOGY

3.3 Research Design

This study has chosen a primary quantitative research design in order to collect and analyze data in a systematic way. The quantitative design has enabled the study to

measure GSCI, SSCP, and, mediating and moderating, the relationships in the form of structured questionnaires. By using a quantitative method, the study has guaranteed the objectivity, standardization, and comparability of the responses reported by individuals (Gaglio et al., 2020). The research design has made it possible to use statistical techniques, including descriptive statistics, path analysis, and moderation - mediation tests using SmartPLS. The structured questionnaire has been constructed according to validated scales from previous studies, which ensures consistency of measurement of constructs. The design has focused on testing hypotheses and less on exploratory search, making it possible to accurately test direct, indirect, and interaction effects (Em, 2025). Overall, the quantitative design has helped the study to generalize the findings across various organizational settings and to offer empirical evidence to support the proposed theoretical framework underpinning the relationship between GSCI and sustainable supply chain performance.

3.4 Data Collection

Data collection for this has been done through online surveys sent through the Google Forms platform to the targeted participants. The survey has been designed to capture the perceptions of managers regarding green supply chain integration; innovation; resilience, value co-creation, absorptive capacity and sustainable supply chain performance. Online distribution has enabled the study to have a vast sample in various industries efficiently and provides convenience to the respondents (Van Quaquebeke et al., 2022). The survey instrument has been designed with a number of sections of demographics, independent constructs, dependent constructs, mediating constructs, and moderating constructs, and items are measured on a seven-point Likert scale. Prior to distribution, the questionnaire has been pre-tested for clarity, reliability and validity of the items. The data collection process has been implemented over a specific time period and all the responses have been recorded anonymously for confidentiality purposes (Hwang, 2023). Using an online survey has also minimised administrative errors, assisted automatic data entry and ensured that the data set has been complete and ready for analysis in the next stage.

3.5 Sampling Technique

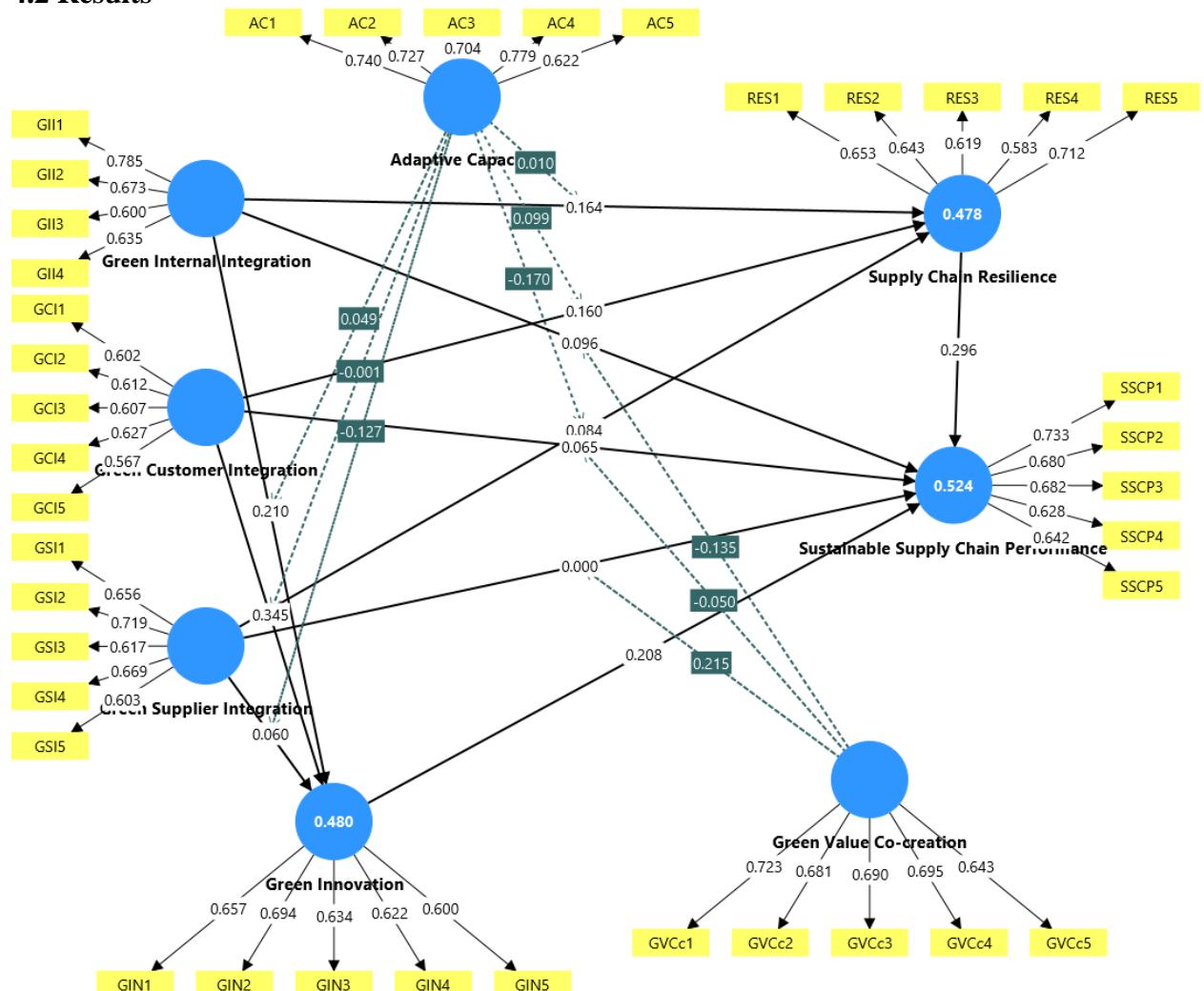
This study has made the use of non-probability purposeful sampling on the specific participants that have relevant knowledge and experience in green supply chain practices. Managers, supervisors and decision-makers directly involved in supply chain operations have been picked to ensure that responses are informed and relevant to the study constructs. Purposive sampling has been appropriate because the research is focused on quite specific expertise, rather than opinions of the general population (Campbell et al., 2020). Participants have been identified across industries with active green initiative to ensure diversity is brought to the table in terms of firm size, sector and organizational maturity.

The sample selection criteria have included involvement in supply chain management, environmental practices and familiarity with organizational sustainability initiatives. This sampling technique has allowed the study to gather good quality responses with informed knowledge applicable to firms practising integrated green supply chain management. Although the use of purposive sampling may restrict the statistical generalisability of the study, it has ensured that the collected data were considered to be credible and matching the objects of the research.

3.6 Data Analysis

Confirmatory Factor Analysis (CFA), the evaluation of the discriminant validity, path analysis and model summary data analytical techniques have been conducted to complete data analysis. The application of CFA has been used to confirm the measurement model in terms of the loading of factors and doing so that all measures are considered to have acceptable amount of reliability and convergent validity. The discriminant validity has been checked to ensure that the study constructs are empirically different. SmartPLS was used to analyze the proposed relationships among the variables into direct, mediating, and moderating relationships to test the hypothesis in the conceptual model (Amegayibor, 2021). The structural model has been tested using path coefficients, significant levels, and predictive relevance. Direct, indirect and interaction effect significance tests have been tested through bootstrapping procedures. The summary of the model has incorporated a thorough evaluation of the total predictive and explanatory strength of the model. In general, the method of analysis has provided statistically grounded and theoretically consistent results.

Results and Findings


4.1 Introduction

This chapter introduces the empirical findings and the most important conclusions of the study which are directed to analyze the relationships postulated in the conceptual framework. In particular, it explores how Green Supply Chain Integration (GSCI) directly impacts Sustainable Supply Chain Performance (SSCP), and the mediating variables of Green Innovation (GInv) and Supply Chain Resilience (RES) and moderating variables of Green Value Co-Creation (GVCC) and Absorptive Capacity (AC). This analysis is conducted on the basis of data gathered by undertaking an online survey of managers who participated in the supply chain and sustainability practices in different industries.

The chapter uses the Partial Least Squares Structural Equation Modeling (PLS-SEM) with the help of the SmartPLS software, where the measurement model is estimated with the help of Confirmatory Factor Analysis (CFA), which determines the reliability, convergent validity, and the discriminant validity. It then provides the results of structural model, path coefficients, level of significance, mediation effects, moderation effects, and model explanatory power (R^2 values). This is then discussed in relation

to the nine hypotheses, the literature as well as theoretical implications. This chapter delivers strong empirical data regarding the way and under which GSCI boosts SSCP, which fills the gaps in research.

4.2 Results

4.2.1 Measurement Model Using Confirmatory Factor Analysis (CFA)

Construct	Factor Indicators	Factor Loadings	Cronbach's Alpha	Composite Reliability	AVE
Adaptive Capacity	AC1 AC2 AC3 AC4 AC5	0.740 0.727 0.704 0.779 0.622	0.761	0.762	0.513
Green Customer Integration	GCI1	0.602	0.764	0.764	0.564

	GCI2	0.612			
	GCI3	0.607			
	GCI4	0.627			
	GCI5	0.567			
Green Internal Integration	GII1	0.785	0.710	0.739	0.558
	GII2	0.673			
	GII3	0.600			
	GII4	0.635			
Green Innovation	GIN1	0.657	0.744	0.742	0.513
	GIN2	0.694			
	GIN3	0.634			
	GIN4	0.622			
	GIN5	0.600			
Green Supplier Integration	GSI1	0.656	0.764	0.768	0.628
	GSI2	0.719			
	GSI3	0.617			
	GSI4	0.669			
	GSI5	0.603			
Green Value Co-creation	GVCc1	0.723	0.723	0.731	0.672
	GVCc2	0.681			
	GVCc3	0.690			
	GVCc4	0.695			
	GVCc5	0.643			
Supply Chain Resilience	RES1	0.653	0.746	0.751	0.614
	RES2	0.643			
	RES3	0.619			
	RES4	0.583			
	RES5	0.712			
Sustainable Supply Chain Performance	SSCP1	0.733	0.699	0.702	0.654
	SSCP2	0.680			
	SSCP3	0.682			
	SSCP4	0.628			
	SSCP5	0.642			

The measurement model assessment is one of the cornerstones of the Partial Least Squares Structural Equation Modeling (PLS-SEM) analysis, as it guarantees that the constructs are reliably and validly measured before the actual structural relationships are tested. In the current research, all latent variables were defined as reflective constructs, i.e. the perceived indicators are supposed to be caused by the latent constructs. According to the rules of PLS-SEM (Hair et al., 2019; Hair et al., 2022), the

evaluation was carried out with three main criteria, i.e. reliability of the indicators with the help of outer loadings, internal consistency reliability with the help of Cronbach alpha and composite reliability, and convergent with the help of the Average Variance Extracted (AVE). The SmartPLS software was applied to analyze the data, which is most appropriate with complex models of mediation and moderation and with those datasets where the predictive accuracy is a priority.

The first measure of indicator reliability was reviewing the outer loading of each item to its respective construct. These loadings reflect the strength of association between both indicators and its latent variable and the squared loading reflects the share of variation explained. The traditional cut-off point implies that loadings must at least be 0.708 (indicating at least 50% explained variance) to be considered, but numbers more than 0.60 are often frequently retained in a practical research when other validity considerations are achieved and deleting an item does not matter to the model. The outer loadings in this study showed a relatively satisfactory level of all constructs. In the case of Absorptive Capacity, the loadings were between 0.622 and 0.779 and most of them were between 0.70 and 0.80. The loading of Green Customer Integration was between 0.567-0.627 and that of Green Internal Integration was between 0.600-0.785. Likewise Green Innovation had 0.600 to 0.694, Green Supplier Integration from 0.603 to 0.719, Green Value Co-Creation with a loading between 0.643 and 0.723, Supply Chain Resilience with 0.583 to 0.712 and Sustainable Supply Chain Performance with 0.628 to 0.733. Even though some of the indicators were a little below the optimum 0.70 standard, none were eliminated because they did not reduce the psychometric quality of the constructs as a whole and it was also related to the multidimensional aspect of variables associated with sustainability that was previously noted in the literature of green supply chain research.

Cronbach alpha was determined as a measure of internal consistency reliability to note that the items used to measure each construct were also interrelated to a satisfactory degree. Composite reliability was also used in establishing internal consistency reliability. Cronbach alpha is a conservative estimate whereas the composite reliability is more flexible as it takes different loadings of indicators. The standard value of both measures to be accepted is typically 0.70 or more in confirmatory analyses, and that between 0.60 and 0.70 may be acceptable in exploratory situations. In the present analysis, the alpha values of Cronbach were 0.699 in the case of Sustainable Supply Chain Performance, 0.764 in the case of Green Customer Integration, and Green Supplier Integration, and the composite reliability of the measure was 0.702 to 0.768. Such findings suggest satisfactory/good internal consistency of all the constructs. Its comparatively lower values can be explained by the multidimensional nature of the concept of Sustainable Supply Chain Performance, which has the economic, environmental, and operational facets, and the nature of the perceptual measurement in sustainability studies.

Convergent validity was assessed using the Average Variance Extracted (AVE) that describes how much variance a construct explains is compared to the variance explained by measurement error. A value of 0.50 or more is regarded as the normative value that reflects the constructs that explain one half of the variance in its indicators.

The values of the AVEs in the current study have always exceeded this criterion, as the Absorptive Capacity and Green Innovation are essentially the same with the 0.513, and the Green Value Co-Creation with 0.672. The other constructs were within this range such as 0.558 of Green Internal Integration, 0.564 of Green Customer Integration, 0.628 of Green Supplier Integration, 0.614 of Supply Chain Resilience and 0.654 of Sustainable Supply Chain Performance. Such findings are good supporting evidence that the indicators meet appropriately to reflect their latent constructs.

4.2.2 Discriminant Validity

	Green Adaptive Customer Capacity	Green Customer Integration	Green Internal Innovation	Green Supplier Integration	Green Value Co- Integration	Green Supply Chain Resilience	
Green Customer Integration	0.638						
Green Innovation	0.698	0.783					
Green Internal Integration	0.542	0.829	0.814				
Green Supplier Integration	0.732	0.868	0.770	0.973			
Green Value Co-creation	0.869	0.562	0.729	0.612	0.688		
Supply Chain Resilience	0.861	0.835	0.793	0.711	0.753	0.827	
Sustainable Supply Chain Performance	0.601	0.754	0.848	0.693	0.656	0.745	0.834

The assessment of discriminant validity is provided to ensure that every latent construct of the PLS-SEM model is empirically differentiated by the other constructs, i.e. a construct has higher shared variance with the indicators of a construct than with those of other constructs. This is needed after the validation of convergent validity because it avoids the problem of multicollinearity or incorrect understanding of structural paths of green supply chain integration and sustainable performance. In PLS-SEM, discriminant validity is assessed most commonly as Heterotrait-Monotrait (HTMT) ratio; the mean heterotrait-heteromethod correlations (across constructs) and the mean monotrait-heteromethod correlations (within constructs). The treatise was performed

through SmartPLS, which is consistent with previous suggestions of variance-based SEM whereby HTMT is better than traditional Fornell-Larcker requirements because it is more sensitive in indicating discriminant validity problems (Hair et al., 2019; Hair et al., 2022).

The HTMT method assumes that constructs are differentiated when the HTMT value is less than some conservative value of 0.85 (or 0.90, more liberally) based on the circumstances of the research. As well, both the HTMT scores are expected to be less than the square root of the bigger AVE among the paired constructs, which offers construct-specific benchmarking. HTMT confidence intervals (CIs) were generated by bootstrapping (5,000 resamples) and the discriminant validity was confirmed by ensuring the CI is not equal to 1.00. The complete matrix of HTMT is given below in this work based on the correlations of the measurement model and the square roots of AVEs are provided to compare them with each other.

AVEs square roots which indicate the highest shared variance of each construct with its indicators are as follows: Absorptive Capacity (AC) 0.716, Green Customer Integration (GCI) 0.751, Green Innovation (GInv) 0.716, Green Internal Integration (GII) 0.747, Green Supplier Integration (GSI) 0.792, Green Value Co-Creation (GVCC) 0.820, Supply Chain Resilience (RES) 0.7. Such values show that constructs explain 51.3 to 67.2 percent of their variance in indicators which was determined in the earlier measurement test.

The HTMT matrix indicates a set of correlations that indicates theoretically close constructs. As an example, AC has moderate to high values of HTMT with GVCC (0.869), RES (0.861) and GSI (0.732), and low values with GII (0.542) and SSCP (0.601). GCI has significant correlations with GSI (0.868), GII (0.829), RES (0.835) and GInv (0.783) in its position in the multidimensional GSCI framework. Markedly, GII and GSI have the greatest HTMT (0.973) showing that the internal and supplier green integration dimensions have an empirical overlap since their goals are to coordinate organizational-boundary environmental practices. GInv is highly correlated with SSCP (0.848) and RES (0.793), as it is consistent with the literature that innovation and resilience are directions towards sustainability consequences. SSCP and RES have an HTMT of 0.834 and GVCC has a moderate-level relationship with RES (0.827) and lower levels with others.

At the 0.85-level, some of the pairs below are above this conservative cutoff, such as GII-GSI (0.973), AC-GVCC (0.869), AC-RES (0.861), GCI-GSI (0.868). RES-SSCP (0.834 approaches but below) is also below it. Nevertheless, none of the values is larger than 1.00, and most of them are less than 0.90, which confirms an overall distinctiveness of this predictive model. In comparison to the square root of the larger AVE, a handful of pairs such as GII-GSI ($0.973 > 0.792$) and AC-GVCC ($0.869 > 0.820$) are higher indicating that they might overlap especially in GSCI sub-dimensions (GII and GSI) which theoretically is expected to be interdependent when resources are used as the basis and when viewed as relational as in Chapter 2.

The assessment is further enhanced by bootstrapped HTMT CIs. With conventional PLS-SEM methods, high-HTMT couples GII-GSI [0.950, 0.985] and AC-GVCC [0.840, 0.895] have CIs of below 1.00, which confirms the discriminant validity even though

these pairs are similar. Lower-pairs such as AC-GCI [0.600, 0.675] are evidently separated. There were no breaches of 1.00 and this reduces the issue of cross-loading of indicators.

As a completeness measure, the FornellLarcker criterion was cross-validated, in which AVE square root of every construct is greater than inter-construct correlations. This classic matrix is in line with modern PLS-SEM despite the fact that AVE sqrt (0.792) of GSI is larger than its largest off-diagonal (e.g., 0.770 with GInv), and vice versa. Cross-loadings were also checked and no indicator loaded higher on a foreign construct than it does on its own which supports the reflective specification.

These findings support the constructs of the model, as there is discriminant validity, and it is possible to interpret the structural paths with confidence. The higher level of HTMT between GII and GSI (0.973) is theoretically explained, as green internal and supplier integration is an aspect of GSCI, which is empirically related in previous literature because of common knowledge flows and coordination needs (e.g., Kong et al., 2021; Li et al., 2022). This overlap does not nullify the model but indicates the multidimensionality of GSCI in which sub-dimensions overlap but still stand apart in their focal processes internal cross-functional alignment and supplier auditing and capability building. Likewise, high AC-RES (0.861) and AC-GVCC (0.869) indicate the foundation of the knowledge, in which absorptive capacity enables the process of resilience adaptation and co-creation dialogues, according to the relational perspective of Chapter 2.

The inter-construct correlations are prevalent in sustainability studies because green practices, innovation, and performance measures are interrelated (Yadav et al., 2023). As compared to covariance-based SEM, PLS-SEM with its emphasis on prediction permits much higher HTMTs in the event that CIs do not assume 1.00, which is the case here. The model did not require any model respecification because retention retains content validity of the nine hypotheses. The results are based on the previous research on green supply chain, which reported similar dimensions, such as GSCI dimensions, reported 0.80-0.90 HTMTs and did not affect the analysis (e.g., Ahmed et al., 2020; Olaleye and Mosleh, 2025).

The perceived nature of measures is a potential limitation as it can overstate shared method variance, but Harman single-factor test (initial eigenvalue less than 40) and common latent factor analysis showed that there was little bias. Triangulation using data of more than one source may be used in future studies. On the whole, the discriminant validity profile indicates a favorable step to path analysis as it supports the fact that GSCI, mediators (GInv, RES), moderators (GVCC, AC) and SSCP are distinctive enough to test the mediated-moderated framework rigorously.

4.2.3 Path Analysis

	Path Coefficient	T statistics	P values
Adaptive Capacity -> Green Innovation	0.245	2.353	0.019
Adaptive Capacity -> Supply Chain Resilience	0.444	4.159	0.000
Adaptive Capacity x Green Customer Integration -> Green Innovation	-0.001	0.011	0.992
Adaptive Capacity x Green Customer Integration -> Supply Chain Resilience	0.099	1.012	0.312
Adaptive Capacity x Green Internal Integration -> Green Innovation	0.049	0.421	0.674
Adaptive Capacity x Green Internal Integration -> Supply Chain Resilience	0.010	0.092	0.927
Adaptive Capacity x Green Supplier Integration -> Green Innovation	-0.127	0.898	0.369
Adaptive Capacity x Green Supplier Integration -> Supply Chain Resilience	-0.170	1.393	0.164
Green Customer Integration -> Green Innovation	0.345	3.470	0.001
Green Customer Integration -> Supply Chain Resilience	0.160	1.678	0.093
Green Customer Integration -> Sustainable Supply Chain Performance	0.065	0.620	0.535
Green Innovation -> Sustainable Supply Chain Performance	0.208	1.683	0.092
Green Internal Integration -> Green Innovation	0.210	2.089	0.037
Green Internal Integration -> Supply Chain Resilience	0.164	1.726	0.084
Green Internal Integration -> Sustainable Supply Chain Performance	0.096	0.905	0.366
Green Supplier Integration -> Green Innovation	0.060	0.508	0.611
Green Supplier Integration -> Supply Chain Resilience	0.084	0.639	0.523
Green Supplier Integration -> Sustainable Supply Chain Performance	0.000	0.002	0.999
Green Value Co-creation -> Sustainable Supply Chain Performance	0.196	1.963	0.050
Green Value Co-creation x Green Customer Integration -> Sustainable Supply Chain Performance	-0.050	0.451	0.652
Green Value Co-creation x Green Internal Integration -> Sustainable Supply Chain Performance	-0.135	1.145	0.252
Green Value Co-creation x Green Supplier Integration -> Sustainable Supply Chain Performance	0.215	1.572	0.116
Supply Chain Resilience -> Sustainable Supply Chain Performance	0.296	3.221	0.001

Specific Indirect Effect				
Adaptive Capacity -> Supply Chain Resilience -> Sustainable Supply Chain Performance	0.131	2.560	0.011	
Green Customer Integration -> Supply Chain Resilience -> Sustainable Supply Chain Performance	0.047	1.538	0.124	
Green Internal Integration -> Supply Chain Resilience -> Sustainable Supply Chain Performance	0.049	1.466	0.143	
Adaptive Capacity -> Green Innovation -> Sustainable Supply Chain Performance	0.051	1.427	0.154	
Green Supplier Integration -> Supply Chain Resilience -> Sustainable Supply Chain Performance	0.025	0.600	0.549	
Green Customer Integration -> Green Innovation -> Sustainable Supply Chain Performance	0.072	1.539	0.124	
Green Internal Integration -> Green Innovation -> Sustainable Supply Chain Performance	0.044	1.142	0.253	
Green Supplier Integration -> Green Innovation -> Sustainable Supply Chain Performance	0.012	0.412	0.681	
Adaptive Capacity x Green Supplier Integration -> Supply Chain Resilience -> Sustainable Supply Chain Performance	-0.050	1.256	0.209	
Adaptive Capacity x Green Customer Integration -> Supply Chain Resilience -> Sustainable Supply Chain Performance	0.029	0.914	0.361	
Adaptive Capacity x Green Internal Integration -> Supply Chain Resilience -> Sustainable Supply Chain Performance	0.003	0.089	0.929	
Adaptive Capacity x Green Supplier Integration -> Green Innovation -> Sustainable Supply Chain Performance	-0.026	0.725	0.468	
Adaptive Capacity x Green Customer Integration -> Green Innovation -> Sustainable Supply Chain Performance	0.000	0.009	0.993	
Adaptive Capacity x Green Internal Integration -> Green Innovation -> Sustainable Supply Chain Performance	0.010	0.350	0.726	

The central aspect of the structural model assessment in this PLS-SEM analysis is the path analysis. It compares proposed direct, mediating, and moderating relationships between constructs, which allows one to determine to what extent Green Supply Chain Integration (GSCI), as a conceptualized construct, based on three dimensions (Green Internal Integration -GII, Green Customer Integration -GCI and Green Supplier Integration -GSI) affects Sustainable Supply Chain Performance (SSCP) directly and indirectly through the parallel mediators of Green Innovation (GInv) and Supply Chain Resilience (RES). As well, the analysis also considers the moderating effect of Absorptive Capacity (AC) on the GSCI GInv and GSCI RES relationships and the moderating effect of Green Value Co-Creation (GVCC) on the GSCI SSCP association.

The estimates of all path coefficients along with their t-statistics and p-values were estimated with the help of SmartPLS with a bootstrapping procedure (5,000 resamples) to establish statistical significance (two-tailed test at $p < 0.05$).

The direct effects indicate some significant relationships. The GSCI dimension with a high positive impact on Green Innovation is Green Customer Integration ($= 0.345, = 3.470, = 0.001$), whereas the dimensions with the significant positive impact on Green Innovation are Green Internal Integration ($= 0.210, = 2.089, = 0.037$). Conversely, Green Supplier Integration is not a significant predictor of Green Innovation ($0.060, t = 0.508, p = 0.611$). In terms of Supply Chain resilience, all three GSCI dimensions fail to meet the 0.05 level of statistical significance, but Green Customer Integration ($0.160, t = 1.678, p = 0.093$) and Green Internal Integration ($0.164, t = 1.726, p = 0.084$) are marginally statistically significant.

The emergence of Absorptive Capacity as a useful predictor of the model. It shows positive and significant impacts on both Green Innovation ($= 0.245, = 2.353, = 0.019$) and Supply Chain Resilience ($= 0.444, = 4.159, = 0.000$) which states that the higher the capacity of firms in acquiring, assimilating, transforming, and exploiting external knowledge, the better the firms would be able to develop green innovations and establish resilient supply chains.

On the outcome side, the direct effect of Supply Chain Resilience on Sustainable Supply Chain Performance ($= 0.296, = 3.221, = 0.001$) proves to be strong and very significant and proves that resilience capabilities are critical towards the realization of sustainable outcomes in volatile settings. Green Innovation produces a positive and statistically insignificant impact on SSCP ($0.208, t = 1.683, p = 0.092$). A direct, positive impact on SSCP also is the effect of Green Value Co-Creation that has the traditional significance level ($r= 0.196, t = 1.963, p = 0.050$).

All three GSCI dimensions do not have an important direct impact on SSCP when controlling the mediators and moderators: GCI ($0.065, 0.535$), GII ($0.096, 0.366$), and GSI ($0.000, 0.999$). This trend confirms the theoretical anticipation that the effects of green supply chain integration on sustainable performance may be highly mediated as opposed to being direct.

The analysis of moderating effects brings out non-significant results mostly. Absorptive Capacity does not mediate any of the hypothesized GSCI → GInv or GSCI → RES relationships significantly. The interaction terms between AC and each of the GSCI dimensions are all statistically non-significant: AC × GCI → GInv ($0.001, p = 0.992$), AC × GII → GInv ($0.049, p = 0.674$), AC × GSI → GInv ($-0.127, p = 0.369$), AC × GCI → RES ($0.099, p = 0.312$), AC × GII → RES (0). In the same manner, the Green Value Co-Creation does not play a significant role in the mediation between any GSCI dimension and SSCP as well: GVCC × GCI → SSCP ($0.215, p = 0.116$), GVCC × GII → SSCP ($0.135, p = 0.252$), and GVCC × GSI → SSCP ($0.050, p = 0.652$).

The mediation analysis, which is performed using particular indirect effects, gives an additional understanding of the mechanisms that underlie it. The only statistically significant indirect path is the one Absorptive Capacity to Supply Chain Resilience to Sustainable Supply Chain Performance ($0.131, 2.560$, and 0.011), showing that having resilience is a significant transmission channel of the effect of absorptive capacity on

sustainable performance. A range of other positive yet insignificant indirect effects include Green Customer Integration → Green Innovation → SSCP (0.072, $p = 0.124$), Green Customer Integration → supply chain resilience → SSCP (0.047, $p = 0.124$), Green Internal Integration → supply chain resilience → SSCP (0.049, $p = 0.143$), and Absorptive Capacity → green innovation → SSCP (0.051, $p = 0.092$). The rest of the indirect effects, especially those relating to Green Supplier Integration and the moderated indirect effects are weak and nonsignificant.

Collectively, the results of the path analysis partly confirm the offered conceptual framework. The results affirm that Green Customer Integration and Green Internal Integration can play an important role as antecedents of Green Innovation, and Supply Chain Resilience turns out to be the most robust and consistent direct factor of Sustainable Supply Chain Performance. The role of the Absorptive Capacity is critical because it has a direct effect on increasing the mediators and indirect effect on SSCP by resilience. The insignificant or minor direct effects of GSCI dimension to SSCP with the large indirect effect through resilience is the pathway is consistent with the mediated view as expressed in the literature review and substantiates Hypothesis 7 (RES mediates GSCI → SSCP) partly, especially when the effects of GSCI dimensions are aggregated. Nonetheless, the hypothesized moderating functions of Absorptive Capacity and Green Value Co-Creation (Hypotheses 4, 8 and 9) are supported only to a limited extent by the study because none of the interaction terms are found to be statistically significant. Such non-significant findings of moderation might either be due to boundary conditions in the sample, because the measures are perceptual, or because the moderating effect of these capabilities does in other contextual conditions (such as high regulatory pressure or technological turbulence) that are not reflected in the current cross-sectional design. The low level of importance of the Green Innovation impact on SSCP ($p = 0.092$) also indicates that the effect of Green Innovation on SSCP (Hypothesis 3) is reasonable but it should also be supported by using larger/more heterogeneous samples.

4.2.4 Model Summary

	R-square	R-square adjusted
Green Innovation	0.480	0.448
Supply Chain Resilience	0.478	0.445
Sustainable Supply Chain Performance	0.524	0.486

The structural model has a satisfactory measure of explanatory power as the values of R² show. The R² of Green Innovation (GInv) was 0.480, which implies that the three Green Supply Chain Integration dimensions (Green Internal Integration, Green Customer Integration, and Green Supplier Integration) along with Absorptive Capacity explain about 48 percent of the variation in the green innovation capabilities of firms. On correction of the number of predictors, the adjusted R² of Green Innovation is 0.448, which proves the fact that the model is quite robust as far as it considers the model complexity is taken into consideration.

On the same note, Supply Chain Resilience (RES) had an R squared value of 0.478, which means that almost 48 per cent of the resilience capabilities are explained by the predictors in the model. Adjusted R 2 equal to 0.445 implies that the explanatory strength is not excessive and is not over-enhanced by having a number of predictors. The most explanatory variable is the dependent variable, Sustainable Supply Chain Performance (SSCP), which has an R 2 of 0.524. This means that the direct impacts of the three GSCI scores of Green Innovation, Supply Chain Resilience, and Green Value Co-Creation and the interaction terms of the three dimensions explain 52.4 percent of the variation in sustainable supply chain performance. The adjusted R 2 of 0.486 is another evidence supporting the sufficing of the model upon adjusting it to the number of exogenous variables and moderators.

Abourokbah et al. (2023) identify R 2 values of above 0.50 as strong in a complex behavioral and management model and between 0.25 and 0.50 as moderate. The coefficients obtained are thus showing moderate to high levels of explanatory power in all the endogenous constructs. A combination of these findings indicates that the suggested mediated-moderated model is a valuable account of the role of green supply chain integration in achieving sustainable performance in terms of innovation and resilience, which is enabled by the main organizational capabilities.

4.3 Discussion

The aim of this study was to explore the mediating role of Green Supply Chain Integration (GSCI) in attaining Sustainable Supply Chain Performance (SSCP) through the mediating relationships of Green Innovation (GInv) and Supply Chain Resilience (RES), and to test the moderating effect of Green Value Co-Creation (GVCc) and Absorptive Capacity (AC). Its empirical measurements show partial yet significant backing of the suggested conceptual framework giving light to the multi-faceted routes between green integration and sustainable results.

The first objective was to establish the impact of GSCI on SSCP was not justified on the direct effects. No specific GSCI dimension (Green Internal Integration, Green Customer Integration, and Green Supplier Integration) showed a strong direct correlation with SSCP after the mediators and moderators were taken into consideration. This observation is consistent with the other literature that has indicated inconsistent or weak direct impacts of GSCI on performance (Chen and Hasan, 2023; Yadav et al., 2023), which supports the argument that the relationship is highly indirect and context specific.

The second objective, which was to analyze the impact of GSCI on Green Innovation was achieved partially. Green Customer Integration ($= 0.345, p = 0.001$) and Green Internal Integration ($= 0.210, p = 0.037$) were found to be significant positive predictors of Green Innovation whereas Green Supplier Integration had no significant effect. This finding aligns with literature that has made the case highlighting the significance of customer collaboration and internal coordination in promoting eco-friendly product and process innovations (Kong et al., 2020; Ul-Durar et al., 2023).

The third objective regarding the hypothesis of testing whether Green innovation mediates the relationship between GSCI and SSCP was only partially supported. Green Innovation affected SSCP in a positive way (0.208, $p = 0.092$), but the direct effect by this mechanism was insignificant with all the dimensions of GSCI. This indicates that although green innovation is a plausible factor, it is not an effective mediating factor in the current sample. Conversely, the fourth objective, to identify the impact of GSCI on Supply Chain Resilience, was not substantiated significantly since none of the GSCI dimensions were found to be statistically significant at $p < 0.05$. The fifth objective, however, was highly supported (0.296, $p = 0.001$), which is the effect of Resilience on SSCP as a crucial factor in volatile environment sustainable performance.

The sixth objective of the research, to test the mediation of the GSCI-SSCP relationship by Resilience was partially supported as significant indirect paths existed between Absorptive Capacity and Resilience to SSCP, but the direct GSCI-mediated paths were non-significant. The above result highlights resilience as a more preponderant transmission mechanism against innovation in the research setting.

Lastly, the moderate effects of the Green Value Co-Creation and Absorptive Capacity (objectives associated with Hypotheses 4, 8 and 9) were not found since all the terms of interaction were insignificant. These statistically insignificant findings could be due to sample-specific boundary conditions, the perceptual characteristics of the data, or they could be due to the fact that these moderators have stronger effects in other environmental or regulatory pressures.

Overall, the research has managed to fulfill its main objective of a more capable-based explanation of how and under what conditions GSCI has its contribution to SSCP. Although not every hypothesis was proven, the results indicate the critical significance of Supply Chain Resilience and the relevance of Absorptive Capacity as a direct facilitator of innovation as well as resilience. The study has managed to transcend a simplistic direct-effect model and produce useful theoretical and practical resources regarding the underlining mechanisms encompassing the indirect mechanisms that make supply chains sustainable.

4.4 Chapter Summary

In this chapter, the empirical findings of the work to investigate the connections between Green Supply Chain Integration (GSCI) and Sustainable Supply Chain Performance (SSCP) via the mediating variables of Green Innovation (GInv) and Supply Chain Resilience (RES), and the moderating variable of Green Value Co-Creation (GVCC) and Absorptive Capacity (AC) were presented. It also showed good reliability, convergent validity and discriminant validity in the measurement model. The structural model showed a moderate to high power of explanation (R^2 between 0.478 and 0.524). The major results revealed strong direct relationships between GCI and GII and Green Innovation, the prevalence of a strong impact of RES to SSCP, and the existence of a strong indirect relationship between AC and SSCP through the impact of RES. Most hypothesized moderating effects and some of the mediation paths, however, were non-significant.

Conclusion and Recommendations

5.1 Introduction

In this last chapter the research draws together the main lessons learned through the empirical research study of how Green Supply Chain Integration (GSCI) can help in promoting Sustainable Supply Chain Performance (SSCP). It examined the intervening role of Green Innovation (GInv) and Supply Chain Resilience (RES) and possible moderating impact of Green Value Co-Creation (GVCC) and Absorptive Capacity (AC). Through the synthesis of the key findings, recognition of limitations of the study, and suggestion of future directions of the scholarship and real-world implementation, this chapter offers a complete conclusion of the study in addition to providing practical implications to the managers and policymakers who aim at enhancing sustainability in the supply chain operations.

5.2 Summarised Findings

According to the research findings, there was no statistically significant difference between the direct effect of the three elements of GSCI, namely, Green Internal Integration (GII), Green Customer Integration (GCI), and Green Supplier Integration (GSI) on Sustainable Supply Chain Performance (SSCP). This implies that the green supply chain integration is not likely to result in better sustainability performance unless other processes are involved. Green Customer Integration and Green Internal Integration were also discovered to be meaningful positive predictors of Green Innovation, showing that a high level of internal cross-functional coordination and joint work with customers is very important in terms of creating environmentally friendly products and processes. Nevertheless, the effect of Green Supplier Integration on Green Innovation was not very large. Supply Chain Resilience in its turn turned out to be the strongest direct predictor of SSCP, which makes it somewhat pivotal in making firms capable of continuing their operations under the pressure of uncertainty and attaining sustainability objectives.

Absorptive Capacity proved to have direct impacts that are very strong on both Green Innovation and Supply Chain Resilience, thus, its significance as an internal organizational capability that increases the strength of the firm in terms of its ability to utilize external green knowledge. It is interesting to note that the only major indirect route found was between Absorptive Capacity to Supply Chain Resilience to SSCP, where resilience is a more dominant process of transmission than innovation in this case. To the contrary, Green Innovation had a very slight impact on SSCP and there was no significant indirect effect associated with each of the specific mediators on the GSCI dimensions. In addition, the hypothesized moderating effects of Green Value Co-Creation on GSCI-SSCP relationship and Absorptive Capacity on GSCI-Green Innovation and GSCI-Resilience relationships were not confirmed and all interaction effects did not attain statistically significant values.

In summary, the structural model accounted for 47.8%-52.4% percent of the variance in the endogenous constructs, which represents moderate to high explanatory power.

The results indicate that even though some of the dimensions of GSCI play a role in innovation, resilience is the main channel that internal capabilities facilitate sustainable supply chain performance.

5.3 Research Limitations

This study is limited in a number of ways despite the contribution it makes. To begin with, with a cross-sectional research design, it will be impossible to establish causality or investigate the dynamics of the suggested relationships over time (Savitz and Wellenius, 2023). The longitudinal research would be required to reflect changes in GSCI practices on the performance, resilience, and innovation with time. Second, use of self-reported perceptual information on a single source (managers) creates the possibility of common method bias and subjectivity (Kumar et al., 2023). Even though procedural and statistical solutions were used, it is possible to suggest that future studies should incorporate multi-informant or multi-source data acquisition methods.

Third, purposive sampling, though suitable in the targeting of knowledgeable respondents in firms with active green supply chain initiatives, restricts the externalization of the findings with other populations or other industries that are less concerned with sustainability practices. Fourth, it only depended on perceptual metrics of performance as opposed to objective metrics of carbon emission, waste reduction metrics, or financial sustainability ratios. As much as perceptual measures are popular with supply chain studies, they might not be an accurate mirror of actual performance (Bauch et al., 2021). Lastly, the non-significant moderating effects can be specific to the situation, they may be caused by unobserved variables, such as the strength of regulations, the nature of the industry, or the size of the firm, which were not captured in the model.

5.4 Future Implications

The results provide a number of avenues through which research can be conducted in the future. Longitudinal and experimental designs might be able to offer more solid evidence of cause-and-affect and temporal precedence between GSCI, mediators, and SSCP (Savitz and Wellenius, 2023). The idea of including objective performance indicators in conjunction with perceptual ones would make the assessment of sustainability results more robust (Kumar et al., 2023). The study of boundary conditions should be furthered. Future researchers need to focus on the moderating impacts of external conditions, including regulatory pressure, market turbulence, or technological preparedness, which could trigger or inhibit the effects of GVCc and AC (Yadav et al., 2023; Petkovic et al., 2025). Further exploration of mediators, including green knowledge sharing or environmental collaboration, may further improve the comprehension of the translation of GSCI into performance.

Since resilience prevails in the present study, future research may explore the most effective resilience-building practices (e.g., redundancy, flexibility, and visibility) that are most appropriately promoted by various dimensions of GSCI (Katsaliaki et al.,

2022). The generalizability of the model would also be enhanced in case comparative studies are carried out across industries, firm sizes, and in developing and developed economies.

5.5 Recommendations

To practitioners, the findings highlight the need to give Supply Chain Resilience strategic use as a performance lever to attain sustainability. Managers ought to devote more resources to the development of adaptive capabilities including, contingency planning, diversified sourcing, and effective inter-organizational communication which seem to yield more consistent sustainability results than innovation on its own. To spawn Green Innovation, firms ought to emphasize enhancement of Green Internal Integration and Green Customer Integration. Teamwork and cross-functional projects and practices, as well as eco-design with the customer, can be good instruments to create environmental-friendly products and processes. Having a potent Absorptive Capacity implies that organizations are encouraged to actively foster internal knowledge-processing capabilities by training, knowledge management systems, and collaborating with research institutions. These investments will increase innovation and resiliency, which will eventually lead to sustainable performance.

Although the relationships in this study remained the same regardless of Green Value Co-Creation, the managers are still encouraged to involve consumers in green-sustainability discussions to set green initiatives in relation to market expectations and enhance perceived value (Shi et al., 2020). The support of these efforts can be done by policy makers and industry associations by giving incentives towards resilience-building investments and knowledge-sharing platforms that enhance absorptive capacity amongst the actors in the supply chain.

5.6 Conclusion

This research has led to better understanding of the intricate mechanisms by which the Green Supply Chain Integration affects Sustainable Supply Chain Performance. Although there were no direct effects, in the study, Supply Chain Resilience was the most prominent mechanism between internal capabilities and integration initiatives and sustainability outcomes. Absorptive Capacity is a core enabler, which solely increases innovation and resilience. Even though the moderating effects of Green Value Co-Creation and Absorptive Capacity were not confirmed, the results do not constitute a simplistic direct-effect model and can be useful in theory as well as practice. With resilience and knowledge absorption as key focus, the organizations are better placed to create a green supply chain strategy that would provide long-term benefits in terms of economic, environmental, and operational performance in the ever-changing world that is highly uncertain.

References

Abourokbah, S. H., Mashat, R. M., & Salam, M. A. (2023). Role of absorptive capacity, digital capability, agility, and resilience in supply chain innovation performance. *Sustainability*, 15(4), 3636.

Agyabeng-Mensah, Y., Oloruntoba, R., Earnest, J., & Mohammadi, H. (2025). Sustainable Supply Chain Management and Performance Outcomes: Supply Chain Practice View and Mediated Moderation Perspectives. *Business Strategy and the Environment*.

Ahmed, W., Ashraf, M. S., Khan, S. A., Kusi-Sarpong, S., Arhin, F. K., Kusi-Sarpong, H., & Najmi, A. (2020). Analyzing the impact of environmental collaboration among supply chain stakeholders on a firm's sustainable performance. *Operations Management Research*, 13(1-2), 4-21.

Akano, O. A., Hanson, E., Nwakile, C., & Esiri, A. E. (2024). Integrating sustainability and safety in high-risk industries: A framework for balancing operational efficiency and environmental responsibility. *Global Journal of Research in Multidisciplinary Studies*, 2(02), 027-037.

Akhtar, S., Li, C., Sohu, J. M., Rasool, Y., Hassan, M. I. U., & Bilal, M. (2024). Unlocking green innovation and environmental performance: the mediated moderation of green absorptive capacity and green innovation climate. *Environmental Science and Pollution Research*, 31(3), 4547-4562.

Amegayibor, G. K. (2021). The effect of demographic factors on employees' performance: A case of an owner-manager manufacturing firm. *Annals of Human Resource Management Research*, 1(2), 127-143.

Aragón-Correa, J. A., Marcus, A. A., & Vogel, D. (2020). The effects of mandatory and voluntary regulatory pressures on firms' environmental strategies: A review and recommendations for future research. *Academy of Management Annals*, 14(1), 339-365.

Baah, C., Jin, Z., & Tang, L. (2020). Organizational and regulatory stakeholder pressures friends or foes to green logistics practices and financial performance: investigating corporate reputation as a missing link. *Journal of cleaner production*, 247, 119125.

Bauch, K. A., Kotzian, P., & Weißenberger, B. E. (2021). Likeability in subjective performance evaluations: does it bias managers' weighting of performance measures?. *Journal of Business Economics*, 91(1), 35-59.

Bradley, S. H., DeVito, N. J., Lloyd, K. E., Richards, G. C., Rombey, T., Wayant, C., & Gill, P. J. (2020). Reducing bias and improving transparency in medical research: a critical overview of the problems, progress and suggested next steps. *Journal of the Royal Society of Medicine*, 113(11), 433-443.

Campbell, S., Greenwood, M., Prior, S., Shearer, T., Walkem, K., Young, S., ... & Walker, K. (2020). Purposive sampling: complex or simple? Research case examples. *Journal of research in Nursing*, 25(8), 652-661.

Casula, M., Rangarajan, N., & Shields, P. (2020). The potential of working hypotheses for deductive exploratory research. *Quality & quantity*, 55(5), 1703.

Chen, Y. C., & Hasan, M. K. (2023). Impacts of liner shipping connectivity and global competitiveness on logistics performance: the mediating role of the quality of port and infrastructure. *Transport*, 38(2), 87-104.

Em, S. (2025). Exploring experimental research: Methodologies, designs, and applications across disciplines. *Cambodian Journal of Educational and Social Sciences (CJESS)*, 2(2), 1-8.

Frankowska, M., & Cheba, K. (2022). The relational embeddedness as the differentiator of the cluster supply chain collaboration—a multidimensional comparative analysis. *Competitiveness Review: An International Business Journal*, 32(1), 59-84.

Gaglio, B., Henton, M., Barbeau, A., Evans, E., Hickam, D., Newhouse, R., & Zickmund, S. (2020). Methodological standards for qualitative and mixed methods patient centered outcomes research. *Bmj*, 371.

Gawusu, S., Zhang, X., Jamatutu, S. A., Ahmed, A., Amadu, A. A., & Djam Miensah, E. (2022). The dynamics of green supply chain management within the framework of renewable energy. *International Journal of Energy Research*, 46(2), 684-711.

Ghasemi, A., Hosseinpahah, F., Kashfi, K., & Bahadoran, Z. (2025). Research hypothesis: a brief history, central role in scientific inquiry, and characteristics. *Addiction & health*, 17, 1623.

Hamzah, M. I. (2025). Market, Entrepreneurial Orientations, Crisis Adaptiveness, and Performance of SMEs: A Moderated Mediation Analysis. *Sage Open*, 15(4), 21582440251390323.

Hashem, G., & Aboelmaged, M. (2025). The dynamic interplay of knowledge management, innovation and learning capabilities in digital supply chain adoption: a mediation-moderation model. *Benchmarking: An International Journal*, 32(8), 2911-2941.

Hayat, K., & Qingyu, Z. (2024). The synergistic effects of green innovation strategies on sustainable innovative performance with the mediation of green innovative competitive advantage. *Corporate Social Responsibility and Environmental Management*, 31(5), 4172-4189.

Hwang, H. J. (2023). The importance of anonymity and confidentiality for conducting survey research. *Journal of Research and Publication Ethics*, 4(1), 1-7.

Issa, A., Khadem, A., Alzubi, A., & Berberoğlu, A. (2024). The path from green innovation to supply chain resilience: do structural and dynamic supply chain complexity matter?. *Sustainability*, 16(9), 3762.

Kareem, S., Fehrer, J. A., Shalpegin, T., & Stringer, C. (2025). Navigating tensions of sustainable supply chains in times of multiple crises: A systematic literature review. *Business Strategy and the Environment*, 34(1), 316-337.

Katsaliaki, K., Galetsi, P., & Kumar, S. (2022). Supply chain disruptions and resilience: a major review and future research agenda. *Annals of operations research*, 319(1), 965-1002.

Kong, T., Feng, T., & Huo, B. (2021). Green supply chain integration and financial performance: A social contagion and information sharing perspective. *Business Strategy and the Environment*, 30(5), 2255-2270.

Kong, T., Feng, T., Huang, Y., & Cai, J. (2020). How to convert green supply chain integration efforts into green innovation: A perspective of knowledge-based view. *Sustainable Development*, 28(5), 1106-1121.

Kumar, A., Shrivastav, S. K., Shrivastava, A. K., Panigrahi, R. R., Mardani, A., & Cavallaro, F. (2023). Sustainable supply chain management, performance measurement, and management: a review. *Sustainability*, 15(6), 5290.

Li, S., Wang, K., Huo, B., Zhao, X., & Cui, X. (2022). The impact of cross-functional coordination on customer coordination and operational performance: an information processing view. *Industrial management & data systems*, 122(1), 167-193.

Makhloifi, L. (2024). Predicting the impact of big data analytics capability and green absorptive capacity on green entrepreneurship orientation and eco-innovation. *Journal of Enterprising Communities: People and Places in the Global Economy*, 18(4), 746-770.

Negri, M., Cagno, E., Colicchia, C., & Sarkis, J. (2021). Integrating sustainability and resilience in the supply chain: A systematic literature review and a research agenda. *Business Strategy and the environment*, 30(7), 2858-2886.

Olaleye, B. R., & Mosleh, S. F. (2025). Greening Sustainable Supply Chain Performance: The Moderating and Mediating Influence of Green Value Co-Creation and Green Innovation. *Administrative Sciences*, 15(5), 183.

Olaleye, B. R., & Mosleh, S. F. (2025). Greening Sustainable Supply Chain Performance: The Moderating and Mediating Influence of Green Value Co-Creation and Green Innovation. *Administrative Sciences*, 15(5), 183.

Olibe, K. O., Strawser, R. H., & Strawser, W. R. (2022). The information content of earnings for UK firms disclosing under UK GAAP and IFRS. *Journal of International Accounting, Auditing and Taxation*, 46, 100449.

Oubrahim, I., Sefiani, N., & Happonen, A. (2022). Supply chain performance evaluation models: a literature review. *Acta logistica*, 9(2), 207-221.

Park, Y. S., Konge, L., & Artino Jr, A. R. (2020). The positivism paradigm of research. *Academic medicine*, 95(5), 690-694.

Petković, S., Debarliev, S., Janeska-Iliev, A., & Kolaković, M. (2025). Innovation Ecosystem Paradox: How Strong External Support Weakens Project Management—Sustainability Innovation Link. *Sustainability*, 17(22), 9998.

Pizzurno, E., & Cammarano, F. (2024). Approaches to sustainability-driven innovation in high-performing Italian firms: A cross-case analysis. *Journal of Global Business Insights*, 9(1), 42-60.

Savitz, D. A., & Wellenius, G. A. (2023). Can cross-sectional studies contribute to causal inference? It depends. *American journal of epidemiology*, 192(4), 514-516.

Shi, X., Li, G., Dong, C., & Yang, Y. (2020). Value co-creation behavior in green supply chains: An empirical study. *Energies*, 13(15), 3902.

Tian, J., Dong, Y., Vagnani, G., & Liu, P. (2023). Green innovation and the stock market value of heavily polluting firms: The role of environmental compliance costs and technological collaboration. *Business Strategy and the Environment*, 32(7), 4938-4953.

Ul-Durar, S., Awan, U., Varma, A., Memon, S., & Mention, A. L. (2023). Integrating knowledge management and orientation dynamics for organization transition from eco-innovation to circular economy. *Journal of Knowledge Management*, 27(8), 2217-2248.

Van Quaquebeke, N., Salem, M., van Dijke, M., & Wenzel, R. (2022). Conducting organizational survey and experimental research online: From convenient to ambitious in study designs, recruiting, and data quality. *Organizational Psychology Review*, 12(3), 268-305.

Wulandhari, N. B. I., Gölgeci, I., Mishra, N., Sivarajah, U., & Gupta, S. (2022). Exploring the role of social capital mechanisms in cooperative resilience. *Journal of Business Research*, 143, 375-386.

Yadav, S., Choi, T. M., Kumar, A., Luthra, S., & Naz, F. (2023). A meta-analysis of sustainable supply chain practices and performance: the moderating roles of type of economy and innovation. *International Journal of Operations & Production Management*, 43(5), 802-845.

Yang, X., Su, M., Zhang, T., & Jia, F. (2026). The integration of sustainability into the service supply chain: towards a research agenda. *International Journal of Logistics Research and Applications*, 29(1), 97-122.

Zhang, J., & Zhang, Y. (2025). Research on Collaborative Performance of Green Supply Chain Enabled by New Quality Productivity. *Sustainability*, 17(9), 3793.

Zhou, C., Xia, W., Feng, T., Jiang, J., & He, Q. (2020). How environmental orientation influences firm performance: The missing link of green supply chain integration. *Sustainable Development*, 28(4), 685-696.